About 510,000 results
Open links in new tab
  1. regression - Converting standardized betas back to original …

    I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.

  2. regression - Difference between forecast and prediction ... - Cross ...

    I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems …

  3. regression - What is residual standard error? - Cross Validated

    A quick question: Is "residual standard error" the same as "residual standard deviation"? Gelman and Hill (p.41, 2007) seem to use them interchangeably.

  4. regression - Interpreting the residuals vs. fitted values plot for ...

    None of the three plots show correlation (at least not linear correlation, which is the relevant meaning of 'correlation' in the sense in which it is being used in "the residuals and the fitted …

  5. regression - Trying to understand the fitted vs residual plot?

    Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is …

  6. How to derive the standard error of linear regression coefficient

    another way of thinking about the n-2 df is that it's because we use 2 means to estimate the slope coefficient (the mean of Y and X) df from Wikipedia: "...In general, the degrees of freedom of …

  7. How should outliers be dealt with in linear regression analysis ...

    What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?

  8. regression - When should I use lasso vs ridge? - Cross Validated

    Ridge regression is useful as a general shrinking of all coefficients together. It is shrinking to reduce the variance and over fitting. It relates to the prior believe that coefficient values …

  9. Regression with multiple dependent variables? - Cross Validated

    Nov 14, 2010 · Is it possible to have a (multiple) regression equation with two or more dependent variables? Sure, you could run two separate regression equations, one for each DV, but that …

  10. regression - Linear vs Nonlinear Machine Learning Algorithms

    Jan 6, 2021 · Three linear machine learning algorithms: Linear Regression, Logistic Regression and Linear Discriminant Analysis. Five nonlinear algorithms: Classification and Regression …